(f)(1)(i), and (g)(1)(i) of this subpart provided that these control devices are designed and operated to achieve a total reduction of 95 weight percent or more in the quantity of HAP, listed in Table 1 of this subpart, that is emitted from all process vents within the affected source. (2) For the purpose of complying with this section, a device for which the predominate function is the recovery or capture of solvents or other organics for use, reuse, or sale (e.g., a primary condenser or a solvent recovery unit) is not a control device. ### §63.691 Standards: Equipment leaks. - (a) The provisions of this section apply to the control of air emissions from equipment leaks for which $\S63.683(b)(3)$ of this subpart references the use of this section for such air emission control. - (b) The owner or operator shall control the HAP emitted from equipment leaks in accordance with the applicable provisions of either: - (1) Section 61.242 through §61.247 in 40 CFR Part 61 subpart V—National Emission Standards for Equipment Leaks; or - (2) Section 63.162 through §63.182 in 40 CFR Part 63 subpart H—National Emission Standards for Organic Hazardous Air Pollutants from Equipment Leaks. #### §63.692 [Reserved] # §63.693 Standards: Closed-vent systems and control devices. - (a) The provisions of this section apply to closed-vent systems and control devices used to control air emissions for which another standard references the use of this section for such air emission control. - (b) For each closed-vent system and control device used to comply with this section, the owner or operator shall meet the following requirements: - (1) The closed-vent system shall be designed and operated in accordance with the requirements specified in paragraph (c) of this section. - (2) The control device shall remove, recover, or destroy HAP at a level of performance that achieves the requirements applicable to the particular control device technology as specified in paragraphs (d) through (h) of this section. The owner or operator shall demonstrate that the control device achieves the applicable performance requirements by either conducting a performance test or preparing a design analysis for the control device in accordance with the requirements specified in this section. - (3) Whenever gases or vapors containing HAP are vented through a closedvent system connected to a control device used to comply with this section, the control device shall be operating except at the following times: - (i) The control device may be bypassed for the purpose of performing planned routine maintenance of the closed vent system or control device in situations when the routine maintenance cannot be performed during periods that the emission point vented to the control device is shutdown. On an annual basis, the total time that the closed-vent system or control device is bypassed to perform routine maintenance shall not exceed 240 hours per each 12 month period. - (ii) The control device may be bypassed for the purpose of correcting a malfunction of the closed vent system or control device. The owner or operator shall perform the adjustments or repairs necessary to correct the malfunction as soon as practicable after the malfunction is detected. - (4) The owner or operator shall ensure that the control device is achieving the performance requirements specified in paragraph (b)(2) of this section by continuously monitoring the operation of the control device as follows: - (i) A continuous monitoring system shall be installed and operated for each control device that measures operating parameters appropriate for the control device technology as specified in paragraphs (d) through (h) of this section. This system shall include a continuous recorder that records the measured values of the selected operating parameters. The monitoring equipment shall be installed, calibrated, and maintained in accordance with the equipment manufacturer's specifications. The continuous recorder shall be a data recording device that records either an instantaneous data value at least once every 15 minutes or an average value for intervals of 15-minutes or less. - (ii) For each monitored operating parameter, the owner or operator shall establish a minimum operating parameter value or a maximum operating parameter value, as appropriate, to define the range of conditions at which the control device must be operated to continuously achieve the applicable performance requirements of this section. Each minimum or maximum operating parameter value shall be established as follows: - (A) If the owner or operator conducts a performance test to demonstrate control device performance, then the minimum or maximum operating parameter value shall be established based on values measured during the performance test and supplemented, as necessary, by control device design analysis and manufacturer recommendations. - (B) If the owner or operator uses a control device design analysis to demonstrate control device performance, then the minimum or maximum operating parameter value shall be established based on the control device design analysis and the control device manufacturer's recommendations. - (C) When the control device is required to be operating in accordance with the provisions of paragraph (b)(3) of this section, the owner or operator shall inspect the data recorded by the continuous monitoring system on a routine basis and operate the control device such that the actual value of each monitored operating parameter is greater than the minimum operating parameter value or less than the maximum operating parameter value, as appropriate, established for the control device. - (5) The owner or operator shall inspect and monitor the closed-vent system in accordance with the requirements of §63.695(c) of this subpart. - (6) The owner or operator shall maintain records for each closed-vent system and control device in accordance with the requirements of §63.696 of this subpart. - (7) The owner or operator shall prepare and submit reports for each closed-vent system and control device in accordance with the requirements of §63.697 of this subpart. - (8) The Administrator may at any time conduct or request that the owner or operator conduct a performance test to demonstrate that a closed-vent system and control device achieves the applicable performance requirements of this section. The performance test shall be conducted in accordance with the requirements of §63.694(l) of this subpart. The Administrator may elect to have an authorized representative observe a performance test conducted by the owner or operator. Should the results of this performance test not agree with the determination of control device performance based on a design analysis, then the results of the performance test shall be used to establish compliance with this section. - (c) Closed-vent system requirements. (1) The vent stream required to be controlled shall be conveyed to the control device by either of the following closed-vent systems: - (i) A closed-vent system that is designed to operate with no detectable organic emissions using the procedure specified in §63.694(k) of this subpart; or - (ii) A closed-vent system that is designed to operate at a pressure below atmospheric pressure. The system shall be equipped with at least one pressure gage or other pressure measurement device that can be read from a readily accessible location to verify that negative pressure is being maintained in the closed-vent system when the control device is operating. - (2) In situations when the closed-vent system includes bypass devices that could be used to divert the gas or vapor stream to the atmosphere before entering the control device, each bypass device shall be equipped with either a flow indicator as specified in paragraph (c)(2)(i) or a seal or locking device as specified in paragraph (c)(2)(ii) of this section. For the purpose of complying with this paragraph, low leg drains, high point bleeds, analyzer vents, openended valves or lines, spring-loaded pressure relief valves, and other fittings used for safety purposes are not considered to be bypass devices. (i) If a flow indicator is used to comply with paragraph (c)(2) of this section, the indicator shall be installed at the inlet to the bypass line used to divert gases and vapors from the closed-vent system to the atmosphere at a point upstream of the control device inlet. For this paragraph, a flow indicator means a device which indicates either the presence of gas or vapor flow in the bypass line. (ii) If a seal or locking device is used to comply with paragraph (c)(2) of this section, the device shall be placed on the mechanism by which the bypass device position is controlled (e.g., valve handle, damper lever) when the bypass device is in the closed position such that the bypass device cannot be opened without breaking the seal or removing the lock. Examples of such devices include, but are not limited to, a car-seal or a lock-and-key configuration valve. The owner or operator shall visually inspect the seal or closure mechanism at least once every month to verify that the bypass mechanism is maintained in the closed position. (d) Carbon adsorption control device requirements. (1) The carbon adsorption system shall be designed and operated to achieve one of the following performance specifications: - (i) Recover 95 percent or more, on a weight-basis, of the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the carbon adsorption system; or - (ii) Recover 95 percent or more, on a weight-basis, of the total HAP listed in Table 1 of this subpart contained in the vent stream entering the carbon adsorption system. - (2) The owner or operator shall demonstrate that the carbon adsorption system achieves the performance requirements of paragraph (d)(1) of this section by one of the following methods: - (i) Conduct a performance test in accordance with the requirements of §63.694(l) of this subpart. - (ii) Prepare a design analysis. This analysis shall address the vent stream characteristics and control device operating parameters for the applicable carbon adsorption system type as follows: - (A) For a regenerable carbon adsorption system, the design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design exhaust vent stream organic compound concentration, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total regeneration steam flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of the carbon. - (B) For a nonregenerable carbon adsorption system (e.g., a carbon canister), the design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design exhaust vent stream organic compound concentration, carbon bed capacity, activated carbon type and working capacity, and design carbon replacement interval based on the total carbon working capacity of the control device and emission point operating schedule. - (3) To meet the monitoring requirements of paragraph (b)(4) of this section, the owner or operator shall use one of the following continuous monitoring systems: - (i) For a regenerative-type carbon adsorption system, an integrating regeneration stream flow monitoring device equipped with a continuous recorder and a carbon bed temperature monitoring device for each adsorber vessel equipped with a continuous recorder. The integrating regeneration stream flow monitoring device shall have an accuracy of ±10 percent and measure the total regeneration stream mass flow during the carbon bed regeneration cycle. The temperature monitoring device shall measure the carbon bed temperature after regeneration and within 15 minutes of completing the cooling cycle and the duration of the carbon bed steaming cycle. - (ii) A continuous monitoring system that measures the concentration level of organic compounds in the exhaust vent stream from the control device using an organic monitoring device equipped with a continuous recorder. - (iii) A continuous monitoring system that measures other alternative operating parameters upon approval of the Administrator as specified in 40 CFR 63.8 (f)(1) through (f)(5) of this part. - (4) The owner or operator shall manage the carbon used for the carbon adsorption system, as follows: - (i) Following the initial startup of the control device, all carbon in the control device shall be replaced with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established for the carbon adsorption system. - (ii) The spent carbon removed from the carbon adsorption system shall be managed in one of the following ways: - (A) Regenerated or reactivated in a thermal treatment unit that is designed and operated in accordance with the requirements of 40 CFR 264 subpart X and is permitted under 40 CFR part 270 of this chapter, or certified to be in compliance with the interim status requirements of 40 CFR 265 subpart P of this chapter. - (B) Burned in a hazardous waste incinerator that is designed and operated in accordance with the requirements of 40 CFR 264 subpart O and is permitted under 40 CFR part 270 of this chapter, or certified to be in compliance with the interim status requirements of 40 CFR part 265 subpart O. - (C) Burned in a boiler or industrial furnace that is designed and operated in accordance with the requirements of 40 CFR 266 subpart H and is permitted under 40 CFR part 270 of this chapter, or certified to be in compliance with the interim status requirements of 40 CFR part 266 subpart H of this chapter. - (e) Condenser control device requirements. (1) The condenser shall be designed and operated to achieve one of the following performance specifications: - (i) Recover 95 percent or more, on a weight-basis, of the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the condenser; or - (ii) Recover 95 percent or more, on a weight-basis, of the total HAP, listed in Table 1 of this subpart, contained in the vent stream entering the condenser. - (2) The owner or operator shall demonstrate that the condenser achieves the performance requirements of paragraph (e)(1) of this section by one of the following methods: - (i) Conduct performance tests in accordance with the requirements of §63.694(l) of this subpart. - (ii) Prepare a design analysis. This design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream, and the design average temperatures of the coolant fluid at the condenser inlet and outlet. - (3) To meet the continuous monitoring requirements of paragraph (b)(3)(ii) of this section, the owner or operator shall use one of the following continuous monitoring systems: - (i) A temperature monitoring device equipped with a continuous recorder. The temperature sensor shall be installed at a location in the exhaust vent stream from the condenser. - (ii) A continuous monitoring system that measures the concentration level of organic compounds in the exhaust vent stream from the control device using an organic monitoring device equipped with a continuous recorder. - (iii) A continuous monitoring system that measures other alternative operating parameters upon approval of the Administrator as specified in 40 CFR 63.8 (f)(1) through (f)(5) of this part. - (f) Vapor incinerator control device requirements. - (1) The vapor incinerator shall be designed and operated to achieve one of the following performance specifications: - (i) Destroy the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the vapor incinerator either: - (A) By 95 percent or more, on a weight-basis, or - (B) To achieve a total incinerator outlet concentration for the TOC, less methane and ethane, of less than or equal to 20 parts per million by volume (ppmv) on a dry basis corrected to 3 percent oxygen. - (ii) Destroy the HAP listed in Table 1 of this subpart contained in the vent stream entering the vapor incinerator either: - (A) By 95 percent or more, on a total HAP weight-basis, or - (B) To achieve a total incinerator outlet concentration for the HAP, listed in table 1 of this subpart, of less than or equal to 20 parts per million by volume (ppmv) on a dry basis corrected to 3 percent oxygen. - (iii) Maintain the conditions in the vapor incinerator combustion chamber at a residence time of 0.5 seconds or longer and at a temperature of 760°C or higher. - (2) The owner or operator shall demonstrate that the vapor incinerator achieves the performance requirements of paragraph (f)(1) of this section by one of the following methods: - (i) Conduct performance tests in accordance with the requirements of §63.694(l) of this subpart; or - (ii) Prepare a design analysis. The design analysis shall include analysis of the vent stream characteristics and control device operating parameters for the applicable vapor incinerator type as follows: - (A) For a thermal vapor incinerator, the design analysis shall address the vent stream composition, constituent concentrations, and flow rate and shall establish the design minimum and average temperatures in the combustion chamber and the combustion chamber residence time. - (B) For a catalytic vapor incinerator, the design analysis shall address the vent stream composition, constituent concentrations, and flow rate and shall establish the design minimum and average temperatures across the catalyst bed inlet and outlet, and the design service life of the catalyst. - (3) To meet the monitoring requirements of paragraph (b)(4) of this section, the owner or operator shall use one of the following continuous monitoring systems, as applicable: - (i) For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The temperature sensor shall be installed at a location in the combustion chamber downstream of the combustion zone. - (ii) For a catalytic vapor incinerator, a temperature monitoring device capable of monitoring temperature at two locations equipped with a continuous recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet. - (iii) For either type of vapor incinerator, a continuous monitoring system that measures the concentration level of organic compounds in the exhaust vent stream from the control device using an organic monitoring device equipped with a continuous recorder. - (iv) For either type of vapor incinerator, a continuous monitoring system that measures alternative operating parameters other than those specified in paragraphs (f)(3)(i) or (f)(3)(ii) of this section upon approval of the Administrator as specified in 40 CFR 63.8 (f)(1) through (f)(5) of this part. - (g) Boilers and process heaters control device requirements. - (1) The boiler or process heater shall be designed and operated to achieve one of the following performance specifications: - (i) Destroy the total organic compounds (TOC), less methane and ethane, contained in the vent stream introduced into the flame zone of the boiler or process heater either: - (A) By 95 percent or more, on a weight-basis, or - (B) To achieve in the exhausted combustion gases a total concentration for the TOC, less methane and ethane, of less than or equal to 20 parts per million by volume (ppmv) on a dry basis corrected to 3 percent oxygen. - (ii) Destroy the HAP listed in Table 1 of this subpart contained in the vent stream entering the vapor incinerator either: - (A) By 95 percent or more, on a total HAP weight-basis, or - (B) To achieve in the exhausted combustion gases a total concentration for the HAP, listed in table 1 of the subpart, of less than or equal to 20 parts per million by volume (ppmv) on a dry basis corrected to 3 percent oxygen. ### § 63.694 - (iii) Introduce the vent stream into the flame zone of the boiler or process heater and maintain the conditions in the combustion chamber at a residence time of 0.5 seconds or longer and at a temperature of 760°C or higher. - (iv) Introduce the vent stream with the fuel that provides the predominate heat input to the boiler or process heater (i.e., the primary fuel); or - (v) Introduce the vent stream to a boiler or process heater for which the owner or operator either has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 266 subpart H of this chapter; or has certified compliance with the interim status requirements of 40 CFR part 266 subpart H of this chapter. - (2) The owner or operator shall demonstrate that the boiler or process heater achieves the performance requirements of paragraph (g)(1)(i), (g)(1)(ii), or (g)(1)(iii) of this section using one of the following methods: - (i) Conduct performance tests in accordance with the requirements of §63.694(l) of this subpart. - (ii) Prepare a design analysis. The design analysis shall address the vent stream composition, constituent concentrations, and flow rate; shall establish the design minimum and average flame zone temperatures and combustion zone residence time; and shall describe the method and location where the vent stream is introduced into the flame zone. - (3) The owner or operator shall demonstrate that the boiler or process heater achieves the performance requirements of paragraph (g)(1)(iv) or (g)(1)(v) of this section by keeping records that document that the boiler or process heater is designed and operated in accordance with the applicable requirements of this section. - (4) To meet the monitoring requirements of paragraph (b)(4) of this section, the owner or operator shall use any of the following continuous monitoring systems: - (i) A temperature monitoring device equipped with a continuous recorder. The temperature sensor shall be installed at a location in the combustion chamber downstream of the flame zone. - (ii) A continuous monitoring system that measures the concentration level of organic compounds in the exhaust vent stream from the control device using an organic monitoring device equipped with a continuous recorder. - (iii) A continuous monitoring system that measures alternative operating parameters other than those specified in paragraphs (g)(3)(i) or (g)(3)(ii) of this section upon approval of the Administrator as specified in 40 CFR 63.8 (f)(1) through (f)(5) of this part. - (h) Flare control device requirements. The flare shall be designed and operated in accordance with the requirements of 40 CFR 63.11(b). To meet the monitoring requirements of paragraph (b)(4) of this section, the owner or operator shall use a heat sensing monitoring device equipped with a continuous recorder that indicates the continuous ignition of the pilot flame. ## §63.694 Testing methods and procedures. - (a) This section specifies the testing methods and procedures required for this subpart to perform the following: - (1) To determine the average VOHAP concentration for off-site material streams at the point-of-delivery for compliance with standards specified §63.683 of this subpart, the testing methods and procedures are specified in paragraph (b) of this section. - (2) To determine the average VOHAP concentration for treated off-site material streams at the point-of-treatment for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (c) of this section. - (3) To determine the treatment process VOHAP concentration limit (C_R) for compliance with standards specified $\S63.684$ of this subpart, the testing methods and procedures are specified in paragraph (d) of this section. - (4) To determine treatment process required HAP removal rate (RMR) for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (e) of this section. - (5) To determine treatment process actual HAP removal rate (MR) for compliance with standards specified §63.684 of this subpart, the testing methods